Translation of "set of vectors" to Japanese language:


  Dictionary English-Japanese

Set of vectors - translation :

  Examples (External sources, not reviewed)

So it's a set of collinear vectors.
ここに書きます
So this R4 means a set of four dimensional vectors.
四次元ベクトルの集合
So what's the set of all of the vectors that I can represent by adding and subtracting these vectors?
ベクトルのセットは何でしょう 両方を0で掛けると
This is a set of vectors, and any member of this set is going to look something like this.
このようになります これは liとできます
The sum or set of all those vectors together form the belief space.
つまり粒子フィルタは事後確率を
Why am I defining this obtuse set here and making you think in terms of sets and vectors and adding vectors?
定義するのでしょう その理由は これがより一般的な表現だからです
And so, our line can be described as a set of vectors, that if you were to plot it in standard position, it would be this set of position vectors.
これらの位置ベクトルを使用して 表現すると まず P1
But either of those vectors.
無限の数のベクトルを描くことができます
UV vectors
UV ベクトル
Vectors Segments
ベクトル 線分
But it begs the question what is the set of all of the vectors I could have created?
何でしょう これは そのうちの一つです
Linear algebra gives us a notation and a set of things or a set of operations that we can do with matrices and vectors.
例えば ここに行列があり その列は
A linear combination of these vectors means you just add up the vectors.
これらのベクトルの加算です ベクトルの加算で
I really, since these are vectors, remember, vectors are special cases of matrices, right?
ベクトルも行列の一種だったよね これはベクトルの足し算とも
Invert Normal Vectors
法線ベクトルを反転
But what is the set of all of the vectors I could've created by taking linear combinations of a and b?
ベクトルのセットは何でしょう a とbのベクトルを描きます
And now the set of all of the combinations, scaled up combinations I can get, that's the span of these vectors.
ベクトルのspanです これらのベクトルの任意の長さでの
We just get that from our definition of multiplying vectors times scalars and adding vectors.
定義に沿っています また c1 2 c2 3
Construct the vector difference of two vectors.
2 つのベクトルの差ベクトルを作成します
Construct the vector sum of two vectors.
2 つのベクトルの和ベクトルを作成
And it's composed of two column vectors.
前にこれを習っています この最初のコラム v1 と呼びましょう
All of these are possible attack vectors.
JavaScriptが多くのセキュリティ問題を 抱えていることは当然です
How can I represent the set of all of these vectors, drawn in standard form, or all of the vectors, that if I were to draw them in standard form, would show this line?
標準位置のベクトルを用い 表現できるでしょう このように考えます
So let me define a couple of vectors.
ベクトルaを 0 1 2 3 に定義します
Select the first of the two possibly equal vectors...
等しいかもしれない 2 つのベクトルの 1 番目を選択...
Select the other of the two possibly equal vectors...
等しいかもしれない 2 つのベクトルの 2 番目を選択...
So let me define a couple of vectors here.
このビデオで 使用するベクトルは
So I can get to any of these vectors.
これらのすべてのベクトルの終点は
Those are my two vectors.
これらをを追加すると 何を得るか見てみましょう
Similarly you can assign vectors.
ですから V 1 2 3
Vectors give you the result.
最後に もう少しだけ
R2, by these two vectors.
これらのベクトルが直交することは
You've already dealt with vectors.
微積分や
You can kind of view it as the space of all of the vectors that can be represented by a combination of these vectors right there.
組み合わせで表現できる空間を 示します spanは
So it's just c times a, all of those vectors.
パラメトリック方程式でみたように
So if I were to write the span of a set of vectors, v1, v2, all the way to vn, that just means the set of all of the vectors, where I have c1 times v1 plus c2 times v2 all the way to cn let me scroll over all the way to cn vn.
これらすべてのベクトルのセットで c1 c2 cnのスカラー値がある ベクトルのセットです
Test whether two vectors are equal
2 つのベクトルが等しいかどうかをテスト
The two vectors are the same.
2 つのベクトルは等しいです
I have added the two vectors.
どこに置いてもいいです
So let me pick new vectors.
これらは単調になってきます
Often they are 3 dimensional vectors.
Graph SLAMによって収集されるのは ここでは少し違って見えますが
Let's say we have two vectors.
まず ベクトルaは
Intercept radar vectors for runway threeoneleft.
レーダーの針路は無視しろ 3 1 左
And all a linear combination of vectors are, they're just a
単なる線型での組み合わせです
If every one of the vectors that represented this line, if
すべてのこの線を表現するベクトルに

 

Related searches : Vectors Of - Vectors Of Diseases - Vectors Of Change - Test Vectors - Gene Therapy Vectors - Set Of - Set Set Set - Set Of 2 - Set Of Bookshelves - Set Of Wrenches - Set Of Guides - Set Of Neurons - Set Of Conventions - Set Of Transactions