"のnに従って"の翻訳 英語に:
辞書 日本-英語
のnに従って - 翻訳 :
例 (レビューされていない外部ソース)
log N つまりlog2底のNは Nを電卓に打って | So what is the logorithm? Well, for our purposes, we can just think of a logorithm as follows, okay? |
n 2のn倍はnの2乗 Θ(n²)になります | Now, if K is n 2 that's n times n 2 where n². |
n n 1 n n n 1 n n 1 n 1 n | Choose one of the following as the correction factor. |
build_heapの実行時間はΘ(n) またはもっと簡単にΘ(n log n) 次にnを乗算します | So the way this is working, it does build heap, which we said was Î n or more simply Î n (logn). |
次の エラー n n | Locate produced the following error message |
nノードのクリークにおけるエッジの数は n(n 1) 2なので | And we'll have a complete graph. In the case of 4, we'll have 6 edges. |
ここでもlog nの時間がかかります log nまたはm log nです さてこのn log nと m log nも加算して | For each of the edges in the graph, we do this distance reduction operation, which also is a logn time operation so that becomes for each edge a logn or mlogn. |
nは7.5より大きい数ってことになるね そしてnは整数 だから n 8 | So n has to be greater than 7.5 in order for this to be a triangle. |
nの対数になります したがってヒープの高さはΘ(log n)です | How many times can you half (n) before you get down to 1 which is the root? |
従って2つ目のNの位置9が正解です エイダ ラブレスは 世界初のプログラマとして有名です | The first one is at position 3, but here we're asked to start from position 4, so the one we'll get is this last n at position 9. |
この部分グラフにn 2 この部分グラフにn 2で 合計nです これにn 4 これにn 4 これにn 4 これにn 4で合計nです この先がどうなるかは分かりませんが | Each of these levels we're going to be generating n new edges at this top level, n 2 for this subgraph, and n 2 for this subgraph, which adds up to n, n 4 for this one, n 4 for this one, n 4 for this one, n 4 for this one, which adds up to n. |
2のN乗の可能性があるのです 従って思ったよりも多くの出力があるのです | In fact, in general, if you have N entries, there are 2 to the power of N possibilities. |
n n 1 n 2 | What we want to do is compute this functionà   we're going to compute |
N 1 N 4 N 10の場合です | I'm asking this for different values of N |
ここに nの桁を持っています | So in this formula right here, this is n. |
2のn乗個も考えなくてよいのです 従ってナイーブベイズが適している理由は2つあり | And so that means we don't have to consider all interactions, and we don't need to consider all 2 n possibilities. |
n個のノードについて | Alright, so next we're going to look at some recursively generated graphs. |
さらに nで割ると2 n nとなり この値は nとなります | We can add 2 n to both sides, subtract n from both sides, and we get that. |
この助言に従って | God said, One step at a time. |
N. . N. | November niner 745. |
N. . N. | November niner 748 Charlie. |
ノードがn個のグラフを作って | We're looking at the same basic setup as the last time. |
さらに閾値n₀があり この時c₁g(n) f(n) c₂g(n)となる なおすべてのnは閾値n₀より大きいというものです これに基づいて考えていきます この式を正数であるc₁で割ってみると | Here's the definition that there is some constant c₁ and c₂ bigger than 0 and a a threshold n₀ such that f(n) lies between c₁ of g(n) and c₂ of g(n) for all n bigger than the threshold n₀. |
すべてのnです 最初の n に1乗があります | So this is equal to 4 times 1 to the first power minus 2 times 1 to the zero power. |
nの平方根の場合はどうでしょう この場合はn log nを nのn倍 つまりnの3 2乗と比較します この値は漸近的にn log nより大きいので | With the very long list that were wanting to tap values of, you might as well just sort the whole thing. n, well what happens with n? n where look we're comparing n log n to n( n) which is n³ ². n³ ² is asymptotically larger than n log n so we're still better off just sorting the whole list. |
マリカの車はNストリートを東に向かってる | Marika's car just turned east onto N Street. |
n 1 n 1の平方 n 1の階乗 2のn 1乗でしょうか | With n characters, how many ways of segmenting could there be? |
曲線はNが大きくなるにつれ 急速に水平になる いいかな それがF(n) がlog2底のnって事 | So graphically, what the logarithm is going to look like is it's going to look like. |
1 2 3個と増加し nがn(n 1) 2になるまで増えていきます つまりこの問題の実行回数は 2 n n(n 1) 2となります | In general, we're going to have 1 print statement plus 2 print statements plus 3 print statements plus etc, etc, all the way up to n 1 print statements, which equals n( n 1) 2. |
マウスに従ってフォーカス | Focus Follows Mouse |
パパ 彼に従って | Dad, he's right. |
オプションはΘ(n²) O(n²) O(n³) | I think it was the most dominant one. So let's see what the options were. |
この値はn²と2(n²)の間にありΘ(n²)ということになります | However, the number of edges is always going to be between 0 and n² roughly. |
nの限界も近づく nは7.5より小さくはなれないんだ さて 問題で求めるnは整数ってことになってるね | So, as we push this base down, that's kind of the limit that n approaches. n cannot be any smaller than 7.5. |
密度の高いグラフに関してはn³ log nよりも ワーシャル フロイド法のn³がよさそうです | This better than the n3 logn we get by applying repeat Dijkstra to a dense graph. |
いつだって別のシナリオに従って | And of course the hindsight bias is perfect. |
すべてのnがnより大きい場合 | So that's ???. Okay. Yes. |
n掛けるnの単位行列 というのは おのおのの次元nごとに | So I subscript n by n is the n by n identity matrix. |
n n 2nで4nになります | With that caveat, we proceed. |
これはn nのマトリクスです この場合n 3です | In this problem, we've been asked to build a simplified Sudoko checker. |
nの対数の対数はnの対数よりもさらにゆっくりしか | This function is the logarithm of the logarithm of n. |
ある関数f(n)が g(n)と成長率の等しい関数の集合に属する その必要十分条件は 定数c₁ c₂およびある閾値n₀について n₀より大きなすべてのnにおいて | To be a bit more formal about it, we say that some function f(n) is in the set of functions equally fast growing as g(n), if and only if there are some constants c1 and c2 and some threshold n0 such that for any n bigger than n0, we have something that looks like this the function f(n) for all these values of n all these big values of n is sandwiched between c1 g(n) and c2 g(n). |
両辺において2 nを足してnを引きます | It's not true of all of them, but it's true for some of them. |
また N は頭の N | Of which this kid's got a lot |
f(n)のビッグオーだと言える その訳は 十分に大きな全てのnに対して | So in this event, we would say that T(n) indeed is a Big Oh of f(n). |
関連検索 : に従って - に従って - に従って - に従って - 従っによって - のみに従って - ナンバリングに従って - スケジュールに従って - に従ってフィルタリング - レイアウトに従って - メルケルに従って - IFRSに従って - モットーに従って - DINに従って