"放出確率"の翻訳 英語に:


  辞書 日本-英語

放出確率 - 翻訳 :

  例 (レビューされていない外部ソース)

事後確率を求めるため この出力の確率に事前確率を掛けます
We now apply Bayes rule.
コイン1を選ぶ確率がp0 表が出る確率がp1 1 p0でコイン2を選ぶ確率
And here is my answer. You can really read off the formula that I just gave you.
Aは0 1の確率でXを出力し 0 9の確率でYを出力します
The probability of observing X and Y depends on what state the hidden markov model is in.
Bは0 8の確率でXを出力し 0 2の確率でYを出力します
For A, it's 0.1 for X and 0.9 for Y.
表が2回出る確率は
So now I want to ask you a really tricky question
では裏が出る確率は
For coin X, we know that the probability of heads is 0.3.
事前確率p0を陽性の結果が出る確率と掛けて
And here's my code, this implements Bayes rule.
裏は0 1の確率で出ます
Now that one comes up with heads at 0.9.
表が出る確率は0 6です
And coin 2 is also loaded.
そして 表が出る確率は
So there's 2 total events.
表が出る確率は0 8とします したがって裏が出る確率は0 2です
Now, I'm going to make it really difficult. I'm going to give you a coin let's call it loaded.
白を出力する確率や 白いマスの上の粒子が黒を出力する確率を
From that you can easily calculate the probability of measuring 'white', if a particle falls on a black square.
確率を考えましょう 8回中で3回表が出る確率を
So let's say I want to figure out the probability I'm going to flip a coin eight times and it's a fair coin.
50 の確率 10 25 の確率 20
Then the value of the state for the action go up would be obtained as follows.
確率
Probability
確率?
Phil, the odds against
偏りのあるコインの裏が出る確率は0 1なので 取り出される確率の0 5と掛けると 0 05という確率が得られます 質問は表が出る確率についてでした
So 0.5 times 0.95 gives you 0.45 whereas the unfair coin, the probability of tails is 0.1 multiply by the probability of picking it at 0.5 gives us 0.05
表が出た後 また表が出る確率です
I'm going to take this coin and I'm going to flip it twice. ... the probability of getting a heads and then getting another heads.
そして表が出る確率は0 9で
There's a 0.5 chance of taking coin 2.
裏が出る確率は何でしょう
Suppose the probability of heads is a quarter, 0.25.
Oは確率qで1を出します
And we could do the same thing on the other side. What if O had to go first?
表が出る確率を1とします
Let's now go to the extreme, and this is a challenging probability question.
この値を 今算出した確率とハムの場合の確率の和で割って
Secret carries 1 3, is 1 9, and secret 1 3 again.
ある範囲の出現確率が得られる確率は 小さくなりません
Now, this statement is not true.
Oが先に戦略を選びます 1を出す確率がqで2を出す確率は 1 q です
The same argument going on this side.
確率は
What are the odds?
今の事前確率は平坦ではなく 出力の確率は以前と同じです
And see what happens. It multiplies.
表も裏も出る確率が決まっていて 合計は1で1 4の確率で表が出ました
It's a loaded coin, and the reason is, well, each of them come up with a certain probability.
確率の合計となる値が出ます
Now, what you do, you add those up and then normally don't add up to one.
コイン1を取り出す確率は0 5です
Then we compute the probability for those 2 cases.
コイン2を取り出す確率は0 5です
Let's do it with the second case.
裏が出る確率はいくつですか
Consider a coin that has a probability of landing on heads of 0.7.
確率変数の具体例を出すので
let's look at some actual random variable definitions.
表が出る確率が0 5だとすると
The coin can come up heads or tails, and my question is the following
裏が出る確率は何でしょうか
Suppose the probability for heads is 0.5.
もしコインを0 5の確率で取り出し
Then we can flip and get heads or tails for the coin we've chosen. Now what are the probabilities?
正しい事後確率P C を算出できます なら正確な事後確率Pを得られます
However, if I now divide, that is, I normalize those non normalized probabilities over here by this factor over here,
別の確率を求めてみましょう スパムの確率とハムの確率です
Let's use the Laplacian smoother with K 1 to calculate the few interesting probabilities
コイン1を取り出す確率は0 5ですが
So this case over here, which indeed has tails, tails. We have 0 probability.
つまり 三回偶数を出す確率は イコール
It has no impact on what happens on the next roll.
At ₁の条件下でAtとなる確率に At ₁の確率を掛けた値を算出します
This can be resolved as follows.
そこで事後確率を出しましょう ロボットが赤の場所で赤を見る確率と
Now, I suppose the robot sees red.
成功確率
Probability of success
失敗確率
Probability of failure
では 毎回ごとの確率から調べていきましょう 偶数が出る確率です
So let's just figure out the probability of rolling it each of the times.

 

関連検索 : 検出確率 - 検出の確率 - 確率 - 確率 - 確率 - 確率 - 放出 - 放棄率 - 放射率 - 放熱率 - 放電率 - 放射率 - 追放率 - 放射の放出