"漸近的に"の翻訳 英語に:


  辞書 日本-英語

漸近的に - 翻訳 :

  例 (レビューされていない外部ソース)

そして漸近的に
100, you end up with about five thousand features.
これは漸近的には線形関数です
Our equation from before, 2n 2 n just becomes Θ(n).
これが 本質的に 2 つの漸近線の
This is equal to plus or minus b over a x.
漸近的には成長率は低くなります
If f(n) is in little o(g(n)), that's kind of like saying f(n) is strictly less than g(n).
漸近線に両側に近づきます もちろんこれらの漸近線に
And here, it's going to keep getting closer and closer to the asymptote on that side and then on that side.
sigmod関数は 1に漸近していき 0に漸近していく
And you notice that the sigmoid function, well, it asymptotes at one, and asymptotes at zero as
漸近線の下のここと 漸近線の上にあります
That's not the exact word, but it would look something like that where it's below the asymptote here.
漸近線とは
But I think you get it at this point.
2 つの漸近線を持っています 漸近線は
So a hyperbola, if that's the x, that's the y axis, it has two asymptotes.
漸近線にアプローチしますが 触れません 漸近線に非常に近くなります
It's going to come down and then go off, and never quite touch the asymptote, but approach it.
漸近線に近づきます このように
It just gets closer and closer and closer, arbitrarily close to the asymptote.
若干の漸近線の下になります 必ず 漸近線の下になります
When you're taking the positive square root, we're always going to be slightly below the asymptote.
双曲線の漸近線
Asymptotes of a Hyperbola
漸近線の傾斜は
So x is equal to 1 y is equal to minus 1.
他の漸近線 y は
So that's one asymptote.
これは 漸近線です
So we're always going to be a little bit above the asymptote.
漸近線と点による双曲線
Hyperbola by Asymptotes Point
漸近線を交差しません この漸近線に交差することはありません
Because it will never, a hyperbola will never cross the asymptotes.
三番目の原則は漸近的分析と呼ばれる物で
Okay, lets move on the, the third and final guiding principle.
双曲線の 2 つの漸近線
The two asymptotes of a hyperbola.
これらがd漸近線です
Oh woops, not using my line tool.
この式での漸近線です
Let's draw our asymptotes.
漸近線を描画しました
Go out there.
下方の傾斜の漸近線は
I know you can't read that.
これが 2 つの漸近線で
Which essentially b over a x, plus or minus b over a x.
これは 常に正の平方根の漸近線の少し下になり 負の平方根の漸近線の上になります 負の平方根の漸近線の上になります
So that tells us that were always going to be slightly below the asymptote on the positive square root, and we're always going to be slightly above the asymptote on the negative square root.
常に少し 漸近線の上にあります
The positive square root is the top line.
他の漸近線は ー5 2 です
So that line would look like that.
これらの 2 つの漸近線は
Good enough.
いいですか 他の漸近線は
Got to have a steady hand.
これが 1 つの漸近線です
And then go like that.
その漸近線を描く場合は
So it'll go 3.
漸近線に非常に近くなります わかりましたか
So it's going to get really close to the asymptote, and then go off, and go off in that direction.
必ず 漸近線の下になります これは 常に正の平方根の漸近線の少し下になるので
The asymptote is this thing, but we're always going to be slightly below it.
漸近線を描いてみましょう
Let's do that.
そして 漸近線を描画します
So if these are the axes, then if I were to draw let me draw some asymptotes.
極端な値では0や1に漸近します
So it's approximately linear around F of X equals zero, but it levels off to zero and one as we go to the extremes.
この漸近線で二次曲線を作成
Construct a conic with this asymptote
この二次曲線の漸近線を作成
Construct the asymptotes of this conic
したがって これが漸近線です
Square root of 4 over square root of 9, times x.
この漸近線にアプローチします これは 右に開き
And since you know you're there, you know it's going to be like this and approach this asymptote.
この漸近線は y b a xに等しいです
Let's say it's this one.
その方向に近づいてに行きます 漸近線に近づいて続けています
It's going to get closer and closer, and then here it's going to get closer and closer in that direction.
これが 中心が0の 2 つの漸近線です この 2 つの漸近線の傾きがわかります
And this would've been the two lines of the asymptotes if we were centered at 0.
漸近的に最悪のケースが同じになる場合は 両方のボックスをチェックしてください
In other words, from an asymptotic standpoint, in this algorithm, we'll run the same worse case asymptotically then check both of the boxes.

 

関連検索 : 漸近 - 漸近的な - 漸近的ソリューション - 漸近値 - 漸近バイアス - 漸近結果 - 漸近分布 - 漸近展開 - 漸近的振る舞い - 漸進的に増加 - 漸増 - 漸減 - 漸減 - 漸進