"関心体積"の翻訳 英語に:
辞書 日本-英語
関心体積 - 翻訳 :
例 (レビューされていない外部ソース)
体積 | Volume |
体積は この関数に dyを掛けたもの, | So what would be the volume of that sliver? |
この体積を | Let me try my best to draw this neatly. |
体積が405 です | Well, they also tell us that the volume is 405. |
もとの体積は | So let's think about it. |
これを dv とします その立方体の体積は 体積の微分です | So if I had a little cube here in the volume under consideration, that's a little cube you consider that dv. |
体積が得られるでしょう 体積を求めましょう | So how do we figure out the volume under a surface like this? |
体積は405 キューブです | In units, what are the dimensions of the box? |
体積が405になるか | And that seems pretty reasonable for our reality. |
その体積は2 2 2 | And that little cube has side length 2. |
姉さんの関心は 体重を減らすことだけ | And my sister, she wanted to lose some weight anyway. But she never looked better. |
dy dx dz 小さな立方体の体積です | So dy, which is this. dy times dx, dx times dz. |
tに関する積分です | Well that's equal to what? |
ピアソンの積率相関係数の | So the important topics to take away from this segment. |
書かせてください その比率は 体積の B状態と A状態 の間 その体積から体積まで は カルノサイクルと等しく | And that's that the ratio between the volumes let me write this down that the ratio between the volume at state B and the volume at state A so the ratio of that volume to that volume is equal to, in our Carnot cycle, is equal to the ratio between the volume at state C. |
本の心に対する関係は 食糧の体に対する関係に等しい | Books are to the mind what food is to the body. |
累積 0の場合は確率密度関数 累積 1の場合は累積分布関数の値を返します | Cumulative 0 calculates the density function cumulative 1 calculates the distribution. |
中心体 | I'm getting confused now. |
体積については 見ると | So this is the surface defined by this function. |
この体積が得られます | Now if I multiply this whole thing times dy, |
その心理的関与について見てみました 全体的な関わりや | We looked at psychological involvement how much empathy did you feel for the other person? |
関心が | You care? Want to know |
関心が? | Interested? |
無関心 | Hard. |
筒の表面積に入るかです 体積は立方cmで | That makes sense because surface area is a 2 dimensional measurement. We think about how many sq cm can we fit on the surface of the cylinder. |
部分積分は 1 つの関数の導関数と関数を掛けた積分は 2つの関数を掛けたものから | One way, if you did want to memorize it, you said, OK, the integration by parts says if I take the integral of the derivative of one thing and then just a regular function of another, it equals the two functions times each other, minus the integral of the reverse. |
もしテスト全体に関心がなければNoneを返します | Well, we just we first take the actual test |
小さい中心体を描くよ 中心体の中には 中心小体がある | So let's say I have a little centrosome here. |
全体の面積を把握します | You either multiply the length of the rectangle times the entire width. |
遺体は積み重ねて焼いた | We piled the carcasses and burned them. |
中心体だ | Oh, sorry, did I call those centromeres? |
中心体は | It's very confusing, right? |
科学それ自体は物事の価値に関心を払わない | Science as such is not interested in the value or worth of things. |
さて 最初の積分は xに関して積分しています | So how do we evaluate this integral? |
このポイントの累積分布関数 累積分布から減算します そのポイントの関数です | And so to actually calculate this, what I do is I take the cumulative distribution function of this point and I subtract from that the cumulative distribution function of that point. |
この関数からーの無限から の無限まで 本質的に この全体の実数上の 関数の積分を | I'm going to tell you that if I were to take the integral of this function from minus infinity to infinity, so essentially over the entire real number line, if I take the integral of this function, I'm defining it to be equal to 1. |
好奇心が強く積極的です | They are 12 ft. long, a thousand pounds. |
過去の体験の積み重ねから | But you put one there. Why? |
今 球の体積を見つけるには | And we go straight through the centimeter that distance right over there is 14 centimeters. |
円周率 4 3 7cm 3が 体積です | With that out of the way, let's just apply this radius being 7 centimeters to this formular right over here. |
この四角形の上の体積です | Let me draw it. |
その四角形の上の体積です | These are the same rectangles. |
一心同体インタビュー | Let's get started! To find out how well they understand each other, they answer the questions without discussion |
単位体積のその個数も 拡大率に依存する何かとなる だから体積要素の微小変化 動経方向の微小変化は赤方偏移の関数で | If say, universe was populated by particles such as galaxies or alignment of a clouds, and we can count, then their number per unit volume is something that will be also dependent on the expansion rate. |
なぜなら 圧力と体積の関係は常に同じだからです 1780年にジャック シャルルは 気体と温度の間の異なる関係に気付きました | Boyle's law allows chemists to predict the volume of any gas at any given pressure because the relationship is always the same. |
関連検索 : 蓄積関心 - 固体関心 - 全体の関心 - 全体の関心 - 関心誘導体 - 積極的に関心 - 体積% - 体積 - 体積 - 累積体積 - 累積体積 - 液体体積 - 体積固体 - 蓄積された関心