"関心体積"の翻訳 英語に:


  辞書 日本-英語

関心体積 - 翻訳 :

  例 (レビューされていない外部ソース)

体積
Volume
体積は この関数に dyを掛けたもの,
So what would be the volume of that sliver?
この体積を
Let me try my best to draw this neatly.
体積が405 です
Well, they also tell us that the volume is 405.
もとの体積は
So let's think about it.
これを dv とします その立方体の体積は 体積の微分です
So if I had a little cube here in the volume under consideration, that's a little cube you consider that dv.
体積が得られるでしょう 体積を求めましょう
So how do we figure out the volume under a surface like this?
体積は405 キューブです
In units, what are the dimensions of the box?
体積が405になるか
And that seems pretty reasonable for our reality.
その体積は2 2 2
And that little cube has side length 2.
姉さんの関心は 体重を減らすことだけ
And my sister, she wanted to lose some weight anyway. But she never looked better.
dy dx dz 小さな立方体の体積です
So dy, which is this. dy times dx, dx times dz.
tに関する積分です
Well that's equal to what?
ピアソンの積率相関係数の
So the important topics to take away from this segment.
書かせてください その比率は 体積の B状態と A状態 の間 その体積から体積まで は カルノサイクルと等しく
And that's that the ratio between the volumes let me write this down that the ratio between the volume at state B and the volume at state A so the ratio of that volume to that volume is equal to, in our Carnot cycle, is equal to the ratio between the volume at state C.
本の心に対する関係は 食糧の体に対する関係に等しい
Books are to the mind what food is to the body.
累積 0の場合は確率密度関数 累積 1の場合は累積分布関数の値を返します
Cumulative 0 calculates the density function cumulative 1 calculates the distribution.
中心体
I'm getting confused now.
体積については 見ると
So this is the surface defined by this function.
この体積が得られます
Now if I multiply this whole thing times dy,
その心理的関与について見てみました 全体的な関わりや
We looked at psychological involvement how much empathy did you feel for the other person?
関心が
You care? Want to know
関心が?
Interested?
無関心
Hard.
筒の表面積に入るかです 体積は立方cmで
That makes sense because surface area is a 2 dimensional measurement. We think about how many sq cm can we fit on the surface of the cylinder.
部分積分は 1 つの関数の導関数と関数を掛けた積分は 2つの関数を掛けたものから
One way, if you did want to memorize it, you said, OK, the integration by parts says if I take the integral of the derivative of one thing and then just a regular function of another, it equals the two functions times each other, minus the integral of the reverse.
もしテスト全体に関心がなければNoneを返します
Well, we just we first take the actual test
小さい中心体を描くよ 中心体の中には 中心小体がある
So let's say I have a little centrosome here.
全体の面積を把握します
You either multiply the length of the rectangle times the entire width.
遺体は積み重ねて焼いた
We piled the carcasses and burned them.
中心体だ
Oh, sorry, did I call those centromeres?
中心体は
It's very confusing, right?
科学それ自体は物事の価値に関心を払わない
Science as such is not interested in the value or worth of things.
さて 最初の積分は xに関して積分しています
So how do we evaluate this integral?
このポイントの累積分布関数 累積分布から減算します そのポイントの関数です
And so to actually calculate this, what I do is I take the cumulative distribution function of this point and I subtract from that the cumulative distribution function of that point.
この関数からーの無限から の無限まで 本質的に この全体の実数上の 関数の積分を
I'm going to tell you that if I were to take the integral of this function from minus infinity to infinity, so essentially over the entire real number line, if I take the integral of this function, I'm defining it to be equal to 1.
好奇心が強く積極的です
They are 12 ft. long, a thousand pounds.
過去の体験の積み重ねから
But you put one there. Why?
今 球の体積を見つけるには
And we go straight through the centimeter that distance right over there is 14 centimeters.
円周率 4 3 7cm 3が 体積です
With that out of the way, let's just apply this radius being 7 centimeters to this formular right over here.
この四角形の上の体積です
Let me draw it.
その四角形の上の体積です
These are the same rectangles.
一心同体インタビュー
Let's get started! To find out how well they understand each other, they answer the questions without discussion
単位体積のその個数も 拡大率に依存する何かとなる だから体積要素の微小変化 動経方向の微小変化は赤方偏移の関数で
If say, universe was populated by particles such as galaxies or alignment of a clouds, and we can count, then their number per unit volume is something that will be also dependent on the expansion rate.
なぜなら 圧力と体積の関係は常に同じだからです 1780年にジャック シャルルは 気体と温度の間の異なる関係に気付きました
Boyle's law allows chemists to predict the volume of any gas at any given pressure because the relationship is always the same.

 

関連検索 : 蓄積関心 - 固体関心 - 全体の関心 - 全体の関心 - 関心誘導体 - 積極的に関心 - 体積% - 体積 - 体積 - 累積体積 - 累積体積 - 液体体積 - 体積固体 - 蓄積された関心